PURDUE UNIVERSITY. FORT WAYNE

Department of Civil and Mechanical Engineering

Course ME 25100 – Dynamics

Cross-listed Course CE 25100 – Dynamics

Type of Course Required for ME program

Catalog Description Kinematics of particles in rectilinear and curvilinear motion.

Kinetics of particles, Newton's second law, energy and momentum methods. Systems of particles. Kinematics and plane motion of rigid bodies, forces and accelerations, energy

and momentum methods. Introduction to mechanical

vibrations.

Credits 3

Contact Hours 3

Prerequisite Courses ME 25000 with a minimum grade of C-

Corequisite Courses MA 36300

Prerequisites by

Topics

Newton's laws, statics, vector algebra, calculus, differential

equations

Textbook Bedford and Fowler, Engineering Mechanics: Dynamics,

Prentice Hall, current edition

or

Hibbeler, Engineering Mechanics: Dynamics, Prentice Hall,

current edition

Course Objectives To introduce the student to the analysis of the motion of

particles and rigid bodies using the laws and principles of mechanics; to practice solving problems using techniques learned in the course; and to introduce the analysis of the

motion of simple deformable bodies.

Course Outcomes

Students who successfully complete this course should be able to:

- 1. Analyze the kinematics of particles and rigid bodies in planar motion through understanding of (1, 7):
 - a. Different systems of coordinates
 - b. Translational and rotational motion
 - c. Absolute and relative motion
 - d. Instantaneous center of zero velocity
 - e. Fixed and non-fixed reference frames
- 2. Analyze the kinetics of particles and rigid bodies in planar motion through understanding and practicing of (1, 7):
 - a. Newton's Laws of Motion and Gravitational Attraction
 - b. Free body diagrams
 - c. Equation of motion
 - d. Work and energy principle
 - e. Impulse and momentum principle
- 3. Analyze free and forced vibrations of one-DOF oscillatory systems through understanding and practicing of (1, 7):
 - a. Application of the above laws of dynamics
 - b. Solution of differential equation of motion
 - c. Natural and damped natural frequency
 - d. Resonance

Lecture Topics

- 1. Particle motion
- 2. Curvilinear particle motion
- 3. Particle force and acceleration
- 4. Particle work and energy
- 5. Particle impulse, momentum and impact
- 6. Rigid body velocities
- 7. Rigid body accelerations
- 8. Rigid body force and acceleration
- 9. Rigid body work and energy
- 10. Rigid body impulse, momentum and impact
- 11. Free vibrations
- 12. Forced vibrations
- 13. Viscously damped vibration
- 14. Applications

Computer Usage

None

Laboratory

None

Experience

Design Experience

None

Coordinator

Bongsu Kang, Ph.D.

Date

12 October 2022